[...]
Jianzhi Zhang, a population geneticist, and his colleagues compared nearly 14,000 protein-coding genes in humans and chimpanzees, which have about the same size genome. Using a statistical analysis, they identified 154 human genes that have been positively selected. In contrast, they found 233 such genes in chimpanzees, a 51% increase, they report online this week in the Proceedings of the National Academy of Sciences.
[...]
The study "challenges the idea that there was a great burst of adaptive change in humans, one that was more profound than in other primates or mammals," says Morris Goodman, an evolutionary biologist at Wayne State University School of Medicine in Detroit, Michigan.
But that's not the whole story, argues Ajit Varki, a physician-scientist at the University of California, San Diego. "It's a terrific paper, but they're only looking at one mechanism, the changing amino acids in proteins. Other mechanisms in gene evolution--such as gene expression, duplication, conversion, and inactivation--are likely to be equally important." Further, Varki adds, these types of genomewide analyses are limited, because they do not address the issue of gene function. "It could be that the deletion of a specific gene or a single amino acid change could have more biological significance than a large number of genes that seem to have undergone many changes." And that means we're still a long way from explaining what makes us human--or them chimpanzee, he says.
http://sciencenow.sciencemag.org/cgi/content/full/2007/416/1?rss=1