Eletrodos plásticos tornam chips neurais compatíveis com cérebro
As estruturas verdes são neurônios disparando, cujos sinais são coletados pelas estruturas dos polímeros condutores.[Imagem: Mohammad Reza Abidian]Pesquisadores da Universidade de Michigan, nos Estados Unidos, usaram nanotubos de polímeros para criar eletrodos capazes de registrar sinais cerebrais de forma mais precisa e mais clara do que os utilizados nos atuais implantes neurais.
Chips neuraisOs chamados "chips neurais" - implantes capazes de captar os sinais elétricos gerados pelo cérebro - estão sendo utilizados em várias interfaces cérebro-máquina, para o controle de robôs, equipamentos de auxílio ao movimento, como cadeiras de rodas, e em pesquisas mais avançadas para desvendar as causas de doenças neurológicas, como o Mal de Alzheimer.
O chip neural considerado como o mais avançado já apresentado até hoje é capaz de
evoluir e aprender com o cérebro onde está implantado.
Reação do cérebro aos implantesPara captar os sinais cerebrais, os eletrodos dos chips neurais devem ser inseridos diretamente no cérebro, em cirurgias altamente delicadas e invasivas. Por isso, quanto mais tempo eles durarem, melhor será a qualidade de vida do paciente, que não precisará passar por cirurgias sucessivas.
O problema é que o cérebro não aceita passivamente a inserção dos eletrodos. Assim que as pontas metálicas são implantadas, o cérebro começa a reagir, gerando inicialmente uma resposta inflamatória àquilo que é visto pelo organismo como um ferimento grave.
Após a inflamação, o cérebro passa a lidar com o ferimento de forma crônica. Se isso é ótimo para o organismo, é péssimo para o chip neural, que terá seus eletrodos encapsulados pelo tecido da cicatriz, que o impedirá de captar os sinais dos neurônios, interrompendo o funcionamento do chip.
Polímeros condutoresO que Mohammad Reza Abidian e seus colegas descobriram é que esse problema pode ser grandemente minimizado com a utilização de eletrodos biocompatíveis. Isso exige a utilização de polímeros, mas que necessariamente devem ser condutores elétricos, para que sejam capazes de captar os sinais elétricos dos neurônios.
A solução foi encontrada em um material conhecido como PEDOT - poli(3,4-etilenodioxitiofeno). O plástico condutor, que forma minúsculos nanotubos, foi utilizado para revestir os eletrodos metálicos. Além de torná-los biocompatíveis, o revestimento melhorou em mais de 30% a sensibilidade aos sinais cerebrais em relação aos eletrodos metálicos sem o revestimento.
BiossensorOutra vantagem inesperada, descoberta quando os novos eletrodos biocompatíveis foram implantados no cérebro de cobaias, é que os sinais variam conforme o cérebro tenta defender-se da invasão.
Com isto, além de coletarem as informações dos neurônios, os eletrodos informam quando o cérebro passou de uma resposta aguda - a inflamação inicial - para a resposta crônica - quando o eletrodo é visto pelo cérebro unicamente como um ferimento em cicatrização.
O revestimento de PEDOT permite que os eletrodos operem com menor resistência elétrica do que os eletrodos metálicos, o que significa que eles podem comunicar-se mais claramente com os neurônios individuais.
"Os polímeros condutores são biocompatíveis e têm condutividade eletrônica e iônica," explica Abidian. "Desta forma, esses materiais são bons candidatos para aplicações biomédicas, como interfaces neurais, biossensores e sistemas de liberação contínua de medicamentos."
Bibliografia:Interfacing Conducting Polymer Nanotubes with the Central Nervous System: Chronic Neural Recording using Poly(3-4-ethylenedioxythiophene) Nanotubes.Mohammad Reza Abidian, Kip A. Ludwig, Timothy C. Marzullo, David C. Martin, Daryl R. Kipke
Advanced Materials
Vol.: 21, Issue 37 , Pages 3764 - 3770
DOI: 10.1002/adma.200900887
http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=eletrodos-plasticos-chips-neurais-compativeis-cerebro&id=010165091022