Autor Tópico: ligamentos se fortalecem com exercícios???  (Lida 7339 vezes)

0 Membros e 1 Visitante estão vendo este tópico.

Offline Zibs

  • Nível 21
  • *
  • Mensagens: 727
ligamentos se fortalecem com exercícios???
« Resposta #25 Online: 29 de Novembro de 2005, 11:02:55 »
Citar
Víicio de linguagem, perdao. O que resumí por proteína foi o acúmulo intramuscular de proteína/canais proitéicos oriundos da hipertrofia muscular.


Humm, ta explicado...

Citar
Se, se,... logo deve ser...
Muita especulaçao, nao?
Citar
...o que nao garante que ocorra o mesmo para tendoes/ligamentos. Afirmaçao do consequente.


Concordo, eu ja admiti que nao ha "provas absolutas" sobre o fortalecimento dos tendoes.Estamos a especular mesmo.Mas a logica da especulacao caminha pelo fortalecimento dos mesmos :D .Ainda faltam maiores estudos.Voce, por ser da area, poderia dar uma olhada nas 48 paginas recentes dos abstracts que citei.Eu ja disse que nao o farei.Quem sabe nao aumenta a base de nossas especulacoes.

Mas confesso que nao dou a minima para o manual de falacias - e nunca fui advertido por nao utiliza-lo.Conteste a logica, se puder!!!

Citar
Eu disse que a força muscular depende SÓ de hipertrofia? Onde?


Nao, mas disse que depende da hipertrofia.E ja esta errado do mesmo jeito, conforme expliquei.Se discorda, va no forum que citei.

Citar
Mais uma vez, podemos melhorar a coordenaçao motora e recrutamento de unidades motoras em tendoes, sendo eles estruturas passivas (nao contráteis)? Ou seria um tipo de "hipertrofia estrutural"?

Aonde que citei hipertrofia de tendoes neste post?Ta querendo me induzir ao erro?
Fortalecimento nada a ver tem com hipertrofia.

Citar
Alguém disse que eles eram estáticos? Pelo o que me lembro, comecei o primeiro post falando sobre o caráter dinâmico do osso, como alusao a um provável comportamento semelhante em tendoes e ligamentos. Nao?


Sim, falou dos ossos, mas nao dos tendoes.Um leigo lendo poderia discordar da minha logica, caso nao soubesse da dinamica dos tendoes. Apenas quis salientar que eles tambem eram dinamicos, e por esta razao, talvez este mesmo leigo concorde com minha logica independente de comprovacao cientifica definitiva - afinal, nem tudo na vida precisamos esperar milenios.Nao condeno a sua forma de pensar, ja que é fisioterapeuta, mas lembre-se que há varias outras formas, e restringir o pensamento cientifico ao leitor comum nao é o correto...

Citar
E a parte de nao precipitar-se com indícios nao depende só de responsabilidade. Mas de ceticismo mesmo. Daí, é escolha pessoal: fórum do Clube Cético, ou o da Nova Era?


Novamente me remeto ao fato que há varias formas de pensar.Interessante que nao conseguiu refutar em "nada" minha logica.Para mim ja me dou por satisfeito.
Quanto a escolha do forum, como voce bem disse, é pessoal.Estou aqui e ja provei que sei ser cetico melhor do que muitos,  só que nao me considero um cetico "turrao", apenas isso...
A verdade, em sua essencia, se manifesta sob diferentes roupagens.Sabedoria é comunica-la usando-se da veste do seu interlocutor.

Offline Zibs

  • Nível 21
  • *
  • Mensagens: 727
ligamentos se fortalecem com exercícios???
« Resposta #26 Online: 29 de Novembro de 2005, 11:35:16 »
Enquanto isso, os indicios(eu considero evidencia, mas claro que nao é ciencia isso)...(espero q leia tudo, pois se surpreenderá...ah, e nao foi publicado na science..tem certeza?)..
http://www.vard.org/jour/00/37/2/wren2.html

Vol. 37 No. 2, March/April 2000
Pages 217 - 224

Tendon and ligament adaptation to exercise, immobilization, and remobilization
Tishya A. L. Wren, PhD; Gary S. Beaupré, PhD; Dennis R. Carter
Rehabilitation Research and Development Center, Veterans Affairs Health Care System, Palo Alto, CA; Biomechanical Engineering Division, Mechanical Engineering Department, Stanford University, Stanford, CA.

Abstract--This study provides a theoretical and computational basis for understanding and predicting how tendons and ligaments adapt to exercise, immobilization, and remobilization. In a previous study, we introduced a model that described the growth and development of tendons and ligaments. In this study, we use the same model to predict changes in the cross-sectional area, modulus, and strength of tendons and ligaments due to increased or decreased loading. The model predictions are consistent with the results of experimental exercise and immobilization studies performed by other investigators. These results suggest that the same fundamental principles guide both development and adaptation. A basic understanding of these principles can contribute both to prevention of tendon and ligament injuries and to more effective rehabilitation when injury does occur.

Keywords: adaptation, exercise, immobilization, ligament, mechanobiology, tendon.


--------------------------------------------------------------------------------

This material is based upon work supported by the Veterans Administration Rehabilitation Research and Development Program, Washington, DC 20420
Address all correspondence and requests for reprints to: Tishya Wren, Rehabilitation Research and Development Center, Palo Alto Veterans Affairs Health Care System (153), 3801 Miranda Avenue, Palo Alto, CA 94304; email: wren@stanford.edu.

 
INTRODUCTION
  Hard and soft skeletal connective tissues adapt in response to mechanical loading. This adaptation allows the tissues to withstand the mechanical loads imposed on them during normal activities of daily living. While numerous computational and theoretical studies have examined the functional adaptation of bone (1-5), few analytical studies have considered the adaptation of soft tissues such as tendons and ligaments. In a previous study (6), we introduced a computational model relating changes in the geometric and material properties of tendons and ligaments to biological and mechanobiological influences. In this paper, we use the same model to predict the response of tendons and ligaments to increased or decreased loading experienced during exercise, immobilization, and remobilization.[Grifos:faz tempo estes indicios hein.Ah sim, enquanto nao for publicado na science nao vale nada.Afinal, as referencias deste estudo é um lixo, como ve-se abaixo...espere e veras...calma..nao tire conclusoes "precipitadas]

  A number of experimental studies have examined the effects of exercise, immobilization, and remobilization on tendons and ligaments. Experimental exercise studies have compared the biochemical composition and mechanical properties of tendons and ligaments from exercised animals with those from sedentary controls. The exercised animals undergo a prescribed regimen of running exercises, while the control animals engage in normal cage activity. In some cases, exercise of mature animals leads to increases in tendon weight, cross-sectional area, collagen content, modulus, and strength (7,8). In other cases, exercise has no effect on these properties (9,10). Similarly, exercise before maturity may lead to an increase in mature tendon weight (7), or it may not affect mature tendon weight (11-13). These inconsistencies may stem from differences in the magnitude of loading applied to various structures during general exercise programs (14).[grifos:calma...tem q ler tudo...]


  Immobilization studies have compared the biochemical composition and mechanical properties of tendons and ligaments subject to reduced loading with those from controls experiencing normal loading. Various procedures have been used to reduce the loading, including ankle disarticulation (15), cast immobilization (16,17), and internal fixation (18,19). In mature animals, immobilization does not lead to changes in the weight or collagen content of tendons and ligaments (15,17,19,20) despite increased collagen turnover (18,20,21). Cross-sectional area may decrease (21), as do modulus, strength, and stiffness (16,19,20). With remobilization, tendons and ligaments recover their structural and material properties (21,22). In growing animals, Walsh and colleagues found that immobilized ligaments fail to increase in dry weight, show less increase in cross-sectional area than controls, and decrease in stiffness below the level attained prior to immobilization (23,24). Immobilization clearly affects the properties of tendons and ligaments, although normal properties are recovered when loading is restored.

  While experimental studies have clearly shown that tendons and ligaments respond to exercise, immobilization, and remobilization, no theory has yet been established to explain these responses.This study attempts to establish such a theory. We apply a model used previously to describe tendon and ligament growth and development (6) to predict changes in the geometric and material properties of tendons and ligaments due to exercise, immobilization, and remobilization. The model predictions are compared with the results of experimental exercise and immobilization studies performed by other investigators, and implications for basic control mechanisms of tendon and ligament adaptation are discussed.

 
METHODS
Model Description
  This section briefly describes the computational model used in this study. Development and details of the model have been described previously (6). The model tracks changes in the cross-sectional area, modulus, and strength of an idealized tendon or ligament. Changes in these properties are determined using a time-dependent algorithm that takes into account biological influences, which represent a baseline level of growth and development dependent on age but not affected by mechanical loading, and mechanobiological influences, which represent effects associated with mechanical loading. Figure 1 presents a flow chart for the algorithm.

 
Figure 1. Flow chart for the algorithm used in the simulations. A, cross-sectional area; E, modulus; (/A), total specific rate of cross-sectional area change; , total rate of modulus change; (/A)bio, biological component of specific rate of cross-sectional area change; bio, biological component of rate of modulus change; (/A)mech, mechanobiological component of specific rate of cross-sectional area change; mech, mechanobiological component of rate of modulus change; s, tendon/ligament stress; e, tendon/ligament strain; x, daily strain stimulus; F, force; t, time.

  An initial cross-sectional area Ai and modulus Ei are specified at an initial time t=ti. Age and mechanical loading determine the rates at which these properties change. Given the age t in months, we compute the biological components of both the specific rate of cross-sectional area change

 [1]

and the rate of modulus change

 [2]

where t is a time constant and  and  are scaling constants. To determine the mechanobiological components, we specify the maximum force F exerted on the tendon or ligament during a period of time Dt. This force determines the tendon or ligament stress

s = F/A,  [3]

and, assuming a linear constitutive model as in our previous study, the associated strain

e = s/E.  [4]

We determine a daily strain stimulus (25)

 [5]

where ni is the number of cycles of load type i, Di is the cyclic strain range of the energy equivalent strain for load type i, and m is an empirical constant. For simplicity, as in our previous study, we approximate this expression as

 [6]

by assuming that the stimulus is dominated by a single load case and that it depends on load magnitude much more than number of loading cycles. Given the daily strain stimulus, we use the curves in Figure 2 to determine the mechanobiological components of both the specific rate of cross-sectional area change (/A)mech(x) and of the rate of modulus change mech(x). These curves represent an adaptation rule that attempts to maintain strain stimulus values of 1.5-3 percent/day associated with tensile strains of 1.5-3 percent. Normal, physiological tendon and ligament strains are in this approximate range (26,27), and the literature suggests physiological and failure strains remain relatively constant between different tendons and ligaments, across species, and with age (16,19,26-28).

 
Figure 2. Mechanobiological components of (a) the specific rate of cross-sectional area change and (b) the rate of modulus change. (/A)mech, mechanobiological , mechanobiological component of maximum specific rate of cross-sectional area change; mech, mechanobiological component of rate of modulus change; , mechanobiological component of rate of modulus change; x, daily strain stimulus.

  Once the biological and mechanobiological components have been determined, they sum to give the total specific rate of area change

 [7]

and the total rate of modulus change

 [8]

These rates are used to update the area and modulus,

 [9]

and

 [10]

respectively, with the restriction that the new values remain between specified upper and lower bounds. The upper bounds denote the maximum attainable cross-sectional area for a particular tendon or ligament and the maximum attainable modulus for the tissue comprising all tendons and ligaments. The lower bounds represent the growth that would occur in the complete absence of mechanical loading, that is, the growth contributed by the biological component alone.

  Assuming a constant failure strain , we compute the tendon or ligament strength

 [11]

We then use the updated area and modulus to begin the next iteration.

Model Application
  To study the effects of exercise, immobilization, and remobilization, we applied the algorithm to development of the rabbit Achilles tendon in four altered loading situations: exercise prior to maturity, exercise after maturity, immobilization and remobilization prior to maturity, and immobilization and remobilization after maturity. Normal growth and development was taken to be the control. In all cases, we used the parameter values listed in Table 1.

Table 1.  
Parameter values used in the simulations.  

--------------------------------------------------------------------------------
 
Parameter Value

--------------------------------------------------------------------------------
 
t 3 months
  0.03/day
  1 MPa/day
  0.01/day
  5 MPa/day
  18 mm2
  1,500 MPa
  13%
ti 3 weeks
A(ti) 2.8 mm2
E(ti) 281 MPa

--------------------------------------------------------------------------------
 


  For normal growth and development, we used the data of Gibb and Williams (29) to obtain the following relationship between body mass M measured in kg and the rabbit age t in mo,

M (t) = -2 exp(-t /3.7) + 1.83.   [12]

We used this mass to estimate the force F applied to the tendon during normal growth and development (6)

F (t) = 133M(t),   [13]

where the force is measured in N and the mass in kg.

  It is difficult to estimate the exact percentages by which exercise or immobilization changes the loading applied to a tendon or ligament. However, Walsh et al. (23) reported that immobilized limbs carried only 10 percent of the weight bearing force carried by control limbs at the end of the immobilization period. Therefore, to simulate immobilization, we decreased the applied loading to 10 percent of normal. For exercise, we increased the applied loading by 30 percent. Studies of treadmill locomotion have measured force increases of 9-39 percent in the combined soleus and medial gastrocnemius muscles of cats between walking and running (30,31).

  The simulations followed time courses corresponding to those from particular experimental studies. For exercise, we increased the applied loads by 30 percent starting at the ages of 4.5 and 21 mo (0.5 and 2.3 times the maturation age of rabbits) for comparison with the experimental results of Woo et al. (8) and Ingelmark (7). For immobilization and remobilization, we decreased the applied forces to 10 percent of normal between the ages of 3 and 6 mo (0.3-0.7 times the maturation age of rabbits) for comparison with the findings of Walsh et al. (24) and between the ages of 21 and 24 mo (2.3-2.7 times the maturation age of rabbits) for comparison with the results of Woo et al. (21).

  To compare the simulation results with the experimental data, which come from various tendons and ligaments of rabbits, mice, and swine, we normalized both the simulation results and the experimental data. We normalized animal age by an approximate maturation age for each animal, using 3 mo for mice (32), 9 mo for rabbits (28), and 24 mo for swine (33). We normalized the simulation results using the final values predicted for cross-sectional area, modulus, and strength during normal growth and development. We compared the experimental data with control values from the same study and then expressed them in terms of the simulation results for normal growth and development.

 
RESULTS
[Grifos:finalmente, leia]  The results of our exercise simulations appear in Figure 3, along with experimental data from Woo et al. (8) and Ingelmark (7). For both the immature and mature cases, the simulations predict increases of approximately 14 percent in the tendon cross-sectional area, modulus, and strength. Although the experimental studies provide results only for time points at the beginning and end of the exercise periods, the simulation results are consistent with the available data.

 
Figure 3.
Computational predictions and experimental data illustrating the effects of exercise on the tendon or ligament (a) cross-sectional area, (b) modulus, and (c) strength.

  The results of our immobilization and remobilization simulations appear in Figure 4, along with experimental data from Walsh et al. (24) and Woo et al. (21). For the mature case, the simulations predict a significant decrease in the area, modulus, and strength during immobilization and a reversal of these changes during remobilization. These trends reflect the changes observed by Woo et al. For the immature case, the simulations predict similar rapid losses of modulus and strength during immobilization. However, because the area encounters a biological lower bound that is increasing, the tendon area increases in the immature animal despite immobilization. These predictions are consistent with the findings of Walsh et al. although the simulation predicts smaller increases in the cross-sectional area than were observed experimentally.

 
Figure 4.
Computational predictions and experimental data illustrating the effects of immobilization and remobilization on the tendon or ligament (a)cross-sectional area, (b) modulus, and (c) strength.

  One feature of the simulation results has not been observed experimentally. Following remobilization, the simulations predict that the tendon reaches homeostasis with a larger cross-sectional area and lower modulus than results from normal development. This behavior arises because the area reaches its minimum before the modulus and therefore suffers less severe losses prior to remobilization. Since the area and modulus increase at the same rates during remobilization as during normal development in our model, the remobilized tendon acquires an increased cross-sectional area and decreased modulus.

  Although the predictions for area and modulus differ between normal development and immobilization followed by remobilization, the same stiffness is predicted in these two situations. Figure 5 illustrates the effects of exercise, immobilization, and remobilization on structural properties such as stiffness and failure force as predicted by our simulations. Taking normal growth and development as the control, the effects are essentially the same for the immature and mature cases. Exercise leads to a moderate increase in the stiffness and failure force. Immobilization leads to a significant decrease in these properties, which rapidly return to normal with remobilization. [grifos: conteste os metodos utilizados se discordar]Woo and colleagues (21) have proposed similar exercise, immobilization, and remobilization effects for ligament structural properties based on their experimental studies. Our results corroborate the relationships they have proposed (Figure 5).

 
Figure 5.
Computational predictions of the effects of exercise, immobilization, and remobilization on tendon or ligament structural properties compared with the schematic proposed by Woo et al. (21).

 
DISCUSSION
  In this investigation, we used a computational model to predict changes in the cross-sectional area, modulus, and strength of tendons and ligaments due to exercise, immobilization, and remobilization. Our approach provides a theoretical basis for understanding the experimental results reported by other investigators. In mature animals, immobilization causes a drastic decrease in the loading, and consequently the strain stimulus, experienced by a tendon or ligament. The reduced strain stimulus leads to a rapid loss of cross-sectional area, modulus, and strength. When loading is restored through remobilization, the strain stimulus is elevated and the properties rapidly recover as the immobilization effects are reversed. Exercise can also increase the strain stimulus, leading to increases in the geometric and material properties.[grifos:conteste se puder] Similar changes occur in immature animals, and the difference between immature and mature animals can be attributed to baseline biological growth that occurs independently from mechanical loading. Strains are therefore a likely stimulus for controlling tendon and ligament adaptation both before and after maturity.

  This study used a simplified version of the strain stimulus, taking into account only the peak magnitude of cyclic loading. Previous investigations have shown that load magnitude affects bone remodeling more than the number of loading cycles (34). However, similar studies have not been performed for tendons and ligaments. To improve our understanding of the relationship between tendon and ligament adaptation and cyclic tensile strains, more experimental data are clearly needed. Load magnitudes and number of loading cycles must be better characterized, and cross-sectional area, modulus, and failure stress need to be measured at intermediate time points during exercise and immobilization/remobilization studies. The studies must also cover a sufficient period of time for the tendon or ligament to achieve homeostasis. Our simulation results can guide the design of future experimental studies, which in turn will allow refinement of the computational model.

  While our model suggests that strains are a likely stimulus for tendon and ligament adaptation, it does not address the cellular mechanisms through which the adaptation occurs. The mechanical properties of tendons and ligaments are determined by microstructural parameters including collagen fiber content, fiber orientations, and cross-link density (35). Fibroblasts change these parameters through altered biosynthetic activity stimulated by mechanical loading. Cyclic tensile strains stimulate an up-regulation of type I collagen production (36) and alignment of the collagen fibers in directions of principle tensile strain (37, 38). Removal of loading leads to degradation of the extra-cellular matrix (39) and disruption of collagen fiber alignment (22) and cross-linking (18). A full understanding of tendon and ligament adaptation requires insight into both the initial mechanical stimulus and the cellular response to that stimulus. This study addressed the first of these two issues.

  The mechanical properties most important to tendon and ligament function are structural properties such as stiffness and failure force. Changes in structural properties reflect both geometric and material property changes. Tendons and ligaments can therefore adapt to increased or decreased mechanical loading by adjusting their size, their material properties, or both. Our model takes into account changes in cross-sectional area, a geometric property, and changes in modulus, a material property. Both cross-sectional area and modulus change in response to exercise, immobilization, and remobilization.

  This study of tendon and ligament adaptation used the same theoretical framework as our previous study on tendon and ligament growth and development. In the current study, we applied the relationships and parameter values used previously to describe growth and development to predict the response of tendons and ligaments to exercise, immobilization, and remobilization. By changing only the magnitude of the applied loading, we obtained predictions consistent with the results of experimental exercise and immobilization studies. These results suggest that the principles underlying growth and development also guide the functional adaptation of tendons and ligaments. Further examination of the relationships between basic biology, mechanical loading, and functional adaptation will be assisted by analytical approaches such as those introduced in this study.



ACKNOWLEDGMENTS
  We would like to thank Dr. Vincent R. Hentz, Dr. Eric Sabelman, Dr. R. Lane Smith, and Dr. David Schurman for their helpful suggestions.



REFERENCES
Beaupré GS, Orr TE, Carter DR. An approach for time-dependent bone modeling and remodeling--Application: A preliminary remodeling simulation. J Orthop Res 1990;8:662-70.
Carter DR. Mechanical loading history and skeletal biology. J Biomech 1987;20:1095-109.
Cowin SC, Hegedus DH. Bone remodeling I: A theory of adaptive elasticity. J Elasticity 1976;6:313-26.
Hart RT, Davy DT. Theories of bone modeling and remodeling. In: Cowin SC, ed. Bone mechanics. Boca Raton: CRC Press; 1989. p. 253-77.
Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Sloff TJ. Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech 1987;20:1135-150.
Wren TAL, Beaupré GS, Carter DR. A model for loading-dependent growth, development, and adaptation of tendons and ligaments. J Biomech 1998;31:107-14.
Ingelmark BE. Über den Bau der Sehnen während verschiedener Altersperioden und unter verschiedenen funktionellen Bedingungen. Eine Untersuchung der distalen Sehnen des Musculus biceps brachii und Musculus semitendineus des Menschen sowie der Achillessehnen von Kaninchen und weissen Mäusen. Uppsala LäkFören Förhandl 1945;50:357-95.
Woo SL-Y, Ritter MA, Amiel D, Sanders TM, Gomez MA, Kuei SC, Garfin SR, Akeson WH. The biomechanical and biochemical properties of swine tendons--Long term effects of exercise on the digital extensors. Connect Tissue Res 1980;7:177-83.
Woo SL-Y, Gomez MA, Amiel D, Ritter MA, Gelberman RH, Akeson WH. The effects of exercise on the biomechanical and biochemical properties of swine digital flexor tendons. J Biomech Eng 1981;103:51-6.
Vailas AC, Pedrini VA, Pedrini-Mille A, Holloszy JO. Patellar tendon matrix changes associated with aging and voluntary exercise. J Appl Physiol 1985;58:1572-6.
Suominen H, Kiiskinen A, Heikkinen E. Effects of physical training on metabolism of connective tissues in young mice. Acta Physiol Scand 1980;108:17-22.
Curwin SL, Vailas AC, Wood J. Immature tendon adaptation to strenuous exercise. J Appl Physiol 1988;65:2297-301.
Kiiskinen A. Physical training and connective tissues in young mice--physical properties of achilles tendons and long bones. Growth 1977;41:123-37.
Tipton CM, Vailas AC, Matthes RD. Experimental studies on the influences of physical activity on ligaments, tendons and joints: A brief review. Acta Med Scand 1986;Suppl 711:157-68.
Klein L, Heiple KG, Torzilli PA, Goldberg VM, Burstein AH. Prevention of ligament and meniscus atrophy by active joint motion in a non-weight-bearing model. J Orthop Res 1989;7:80-5.
Noyes FR. Functional properties of knee ligaments and alterations induced by immobilization. A correlative biomechanical and histological study in primates. Clin Orthop 1977;123:210-42.
Karpakka J, Vaananen K, Virtanen P, Savolainen J, Orava S, Takala TES. The effects of remobilization and exercise on collagen biosynthesis in rat tendon. Acta Physiol Scand 1990;139:139-45.
Harwood FL, Amiel D. Differential metabolic responses of periarticular ligaments and tendon to joint immobilization. J Appl Physiol 1992;72:1687-91.
Loitz BJ, Zernicke RF, Vailas AC, Kody MH, Burstein AH. Effects of short-term immobilization versus continuous passive motion in a non-weight-bearing model. Clin Orthop 1989;244:265-71.
Amiel D, Woo SL-Y, Harwood FL, Akeson WH. The effect of immobilization on collagen turnover in connective tissue: A biochemical-biomechanical correlation. Acta Orthop Scand 1982;53:325-32.
Woo SL-Y, Gomez MA, Sites TJ, Newton PO, Orlando CA, Akeson WH. The biomechanical and morphological changes in the medial collateral ligament of the rabbit after immobilization and remobilization. J Bone Jt Surg Am 1987;69A:1200-11.
Hayashi K. Biomechanical studies of the remodeling of knee joint tendons and ligaments. J Biomech 1996;29:707-16.
Walsh S, Frank C, Hart D. Immobilization alters cell metabolism in an immature ligament. Clin Orthop 1992;277:277-88.
Walsh S, Frank C, Shrive N, Hart D. Knee immobilization inhibits biomechanical maturation of the rabbit medial collateral ligament. Clin Orthop 1993;297:253--61.
Mik B, Carter DR. Bone strain gage data and theoretical models of functional adaptation. J Biomech 1995;28:465-9.
Beynnon B, Howe JG, Pope MH, Johnson RJ, Fleming BC. The measurement of anterior cruciate ligament strain in vivo. Int Orthop 1992;16:1-12.
Woo SL-Y, Weiss JA, Gomez MA, Hawkins DA. Measurement of changes in ligament tension with knee motion and skeletal maturation. J Biomech Eng 1990;112:46-51.
Nakagawa Y, Hayashi K, Yamamoto N, Nagashima K. Age-related changes in biomechanical properties of the achilles tendon in rabbits. Europ J Appl Physiol 1996;73:7-10.
Gibb JA, Williams JM. The rabbit in New Zealand. In: Thompson HV, King CM, eds. The European rabbit: the history and biology of a successful colonizer. Oxford: Oxford University Press; 1994. p. 188.
Walmsley B, Hodgson JA, Burke RE. Forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cats. J Neurophysiol 1978;41:1203-16.
Whiting WC, Gregor RJ, Roy RR, Edgerton VR. A technique for estimating mechanical work of individual muscles in the cat during treadmill locomotion. J Biomech 1984;17:685-94.
Cunliffe-Beamer TL, Les EP. The laboratory mouse. In: Poole TB, ed. The UFAW handbook on the care and management of laboratory animals. Essex: Longman Scientific and Technical; 1987. p. 275-308.
Holtz W. Pigs and minipigs. In: Poole TB, ed. The UFAW handbook on the care and management of laboratory animals. Essex: Longman Scientific and Technical; 1987. p. 496.
Whalen RT, Carter DR, Steele CR. Influence of physical activity on the regulation of bone density. J Biomech 1988;21:825 37.
Wren TAL, Carter DR. A microstructural model for the tensile constitutive and failure behavior of soft skeletal connective tissues. J Biomech Eng 1998;120:55 61.
Sutker BD, Lester GE, Banes AJ, Dahners LE. Cyclic strain stimulates DNA and collagen synthesis in fibroblasts cultured from rat medial collateral ligaments. Trans Orthop Res Soc 1990;15:130.
Harris AK, Stopak D, Wild P. Fibroblast traction as a mechanism for collagen morphogenesis. Nature 1981;290:249-51.
Nakatsuji N, Johnson KE. Experimental manipulation of a contact guidance system in amphibian gastrulation by mechanical tension. Nature 1984;307:453-55.
Aggeler J, Frisch SM, Werb Z. Changes in cell shape correlate with collagenase gene expression in rabbit synovial fibroblasts. J Cell Biol 1984;98:1662-7.


Prontinho, levei 5 min para achar, ler e grifar...Ah, o estudo é de 2000, e vc so esta 5 anos desatualizado.Sugiro que va para o forum da Nova Era, quem sabe nao aprende alguma coisa por lá, como um pouco sobre intuicao e sincronicidade.Se dominar estes dois aspectos, nao tenho duvidas que sera um grande cientista - os que realmente descobrem algo, e nao ficam somente a invocar os "se, talvez".
A verdade, em sua essencia, se manifesta sob diferentes roupagens.Sabedoria é comunica-la usando-se da veste do seu interlocutor.

Offline Latorre

  • Nível 12
  • *
  • Mensagens: 249
    • http://www.perineo.cjb.net
ligamentos se fortalecem com exercícios???
« Resposta #27 Online: 30 de Novembro de 2005, 07:53:42 »
Citação de: zibs
Mas confesso que nao dou a minima para o manual de falacias - e nunca fui advertido por nao utiliza-lo.

Nota-se. O que vc faz aqui no forum entao?

Citar
Nao, mas disse que depende da hipertrofia.E ja esta errado do mesmo jeito, conforme expliquei.Se discorda, va no forum que citei.

Santa paciencia...

Citar
Aonde que citei hipertrofia de tendoes neste post?Ta querendo me induzir ao erro?
Fortalecimento nada a ver tem com hipertrofia.

Pelo jeito ninguém precisa te induzir ao erro...  :roll: Se nao esta falando de hipertrofia, entao explique o tipo de fortalecimento do qual voce está falando, e pare de falar de hipertrofia.

Citar
Um leigo lendo poderia discordar da minha logica, caso nao soubesse da dinamica dos tendoes

Certo, você e deus sabem sobre a "dinamica dos tendoes". Prá mim é o suficiente.

Citar
Nao condeno a sua forma de pensar, ja que é fisioterapeuta, mas lembre-se que há varias outras formas, e restringir o pensamento cientifico ao leitor comum nao é o correto...

Mais uma vez, o que vc faz no Clube Cetico?

Citar
Interessante que nao conseguiu refutar em "nada" minha logica.

Refutei todas as vezes, mas você parece nao ter lido. E quer dizer entao que seus argumentos estao certos porque parecem lógicos? Ótimo: mais uma falácia. Se você se desse ao trabalho de ler o manual, veria como "sua lógica" está totalmente errada.

Claro, isso só depende da maneira de pensar. Fique com a sua.

Citar
Estou aqui e ja provei que sei ser cetico melhor do que muitos,  só que nao me considero um cetico "turrao", apenas isso...

Um cético ad hoc?  :histeria:

Citar
Sugiro que va para o forum da Nova Era, quem sabe nao aprende alguma coisa por lá, como um pouco sobre intuicao e sincronicidade.Se dominar estes dois aspectos, nao tenho duvidas que sera um grande cientista

Claro, vou virar um excelente cientista. Daqueles que acredita nas suas hipoteses ao invés de testá-las. E depois ficam enchendo o saco alheio. Perfeito.

 :sos:
"If a man will begin in certainties, he shall end in doubts. But if he will be content to begin in doubts, he shall end in certainties." (Francis Bacon)

Offline Zibs

  • Nível 21
  • *
  • Mensagens: 727
ligamentos se fortalecem com exercícios???
« Resposta #28 Online: 30 de Novembro de 2005, 08:43:43 »
Nao sabe ler?
Por que ao inves de perder tempo comigo e minhas "hipoteses", nao se propoe a combater o texto que postei?Ou nao é ciencia?

Vamos lá, ja que é preguicoso, e nao se deu ao trabalho de ler - definitivamente voce nao é um cetico -, eu coloco "mastigadinha" a parte principal:

The results of our exercise simulations appear in Figure 3, along with experimental data from Woo et al. (8) and Ingelmark (7). For both the immature and mature cases, the simulations predict increases of approximately 14 percent in the tendon cross-sectional area, modulus, and strength. Although the experimental studies provide results only for time points at the beginning and end of the exercise periods, the simulation results are consistent with the available data.  

Se atenha a pesquisa cientifica, nao perca tempo comigo...
A verdade, em sua essencia, se manifesta sob diferentes roupagens.Sabedoria é comunica-la usando-se da veste do seu interlocutor.

blue pill

  • Visitante
Re.: ligamentos se fortalecem com exercícios???
« Resposta #29 Online: 23 de Dezembro de 2005, 01:08:32 »
só pode fortalecer oras, o que mais fortaleceria os ligamentos ?
como os caras fortoes tem ligamentos fortes? coincidencia ?
pois se nao nao tivessem como conseguiriam levantar o peso que levantam ?...

Offline Buckaroo Banzai

  • Nível Máximo
  • *
  • Mensagens: 38.735
  • Sexo: Masculino
Re: Re.: ligamentos se fortalecem com exercícios???
« Resposta #30 Online: 23 de Dezembro de 2005, 09:16:47 »
Citação de: blue pill
só pode fortalecer oras, o que mais fortaleceria os ligamentos ?
como os caras fortoes tem ligamentos fortes? coincidencia ?
pois se nao nao tivessem como conseguiriam levantar o peso que levantam ?...


Eu não sei, talvez nada fortalecesse os ligamentos; aí os fortões seriam fortões porque já tem ligamentos e tendões fortes o suficiente para poderem fortalecer os músculos, como posso saber? ou talvez, alimentação.

Porque o que fortalece os músculos, pelo que sei, é a recuperação de "microlesões" causadas por exercício e uma ou outra coisa, como "sinais" celulares; que acho que não funcionaria necessariamente com ligamentos ou tendões, por não serem músculos, mas tecidos diferentes.

blue pill

  • Visitante
Re.: ligamentos se fortalecem com exercícios???
« Resposta #31 Online: 24 de Dezembro de 2005, 17:52:07 »
sei la, tenho a impressao que os ligamentos vao se calejando conforme voce faz exercicios...

blue pill

  • Visitante
Re.: ligamentos se fortalecem com exercícios???
« Resposta #32 Online: 24 de Dezembro de 2005, 21:12:53 »
eu nao sei nada de fisiologia mas que eu saiba os ligamentos sao a continaçao do musculo, como se fosse o intermediario entre o musculo e o osso, entao como os musculos, da pra fortalecer e hipertrofiar, ja os ossos só com a dieta mesmo...

Offline Buckaroo Banzai

  • Nível Máximo
  • *
  • Mensagens: 38.735
  • Sexo: Masculino
Re.: ligamentos se fortalecem com exercícios???
« Resposta #33 Online: 24 de Dezembro de 2005, 21:20:30 »
eu acho que isso que disse são os tendões, que ligam os músculos aos ossos... os ligamentos ligam os ossos aos ossos mesmo, e quanto maior for a força muscular, menor a carga sobre eles (ou mais ou menos isso).

Mas também não sei se os tendões se fortalecem, depois vou ler esse tópico inteiro, ainda nem li  :oops:

blue pill

  • Visitante
Re.: ligamentos se fortalecem com exercícios???
« Resposta #34 Online: 25 de Dezembro de 2005, 01:36:50 »
hmmmmmm verdade..
entao ligamento é uma coisa, digamos, nao existe? é as "pontas" dos ossos que se encostam ?

Offline Rodion

  • Nível Máximo
  • *
  • Mensagens: 9.872
Re.: ligamentos se fortalecem com exercícios???
« Resposta #35 Online: 25 de Dezembro de 2005, 02:10:32 »
ligamento não é tendão?
existir existe sim, já rompi ué
"Notai, vós homens de ação orgulhosos, não sois senão os instrumentos inconscientes dos homens de pensamento, que na quietude humilde traçaram freqüentemente vossos planos de ação mais definidos." heinrich heine

Offline Buckaroo Banzai

  • Nível Máximo
  • *
  • Mensagens: 38.735
  • Sexo: Masculino
Re: Re.: ligamentos se fortalecem com exercícios???
« Resposta #36 Online: 25 de Dezembro de 2005, 21:06:59 »
Citação de: blue pill
hmmmmmm verdade..
entao ligamento é uma coisa, digamos, nao existe? é as "pontas" dos ossos que se encostam ?


Existem sim. Os ossos não ficam simplesmente encostados e meio "soltos", nem se prendem por encaixe físico apenas; os ligamentos são um tecido que os envolve, e os mantém juntos.

Aqui tem desenhos do esqueleto com os ligamentos, são as coisas que parecem um pouco com chiclete, ligando os ossos:

http://www.vh.org/adult/provider/anatomy/atlasofanatomy/plate07/index.html

Offline Buckaroo Banzai

  • Nível Máximo
  • *
  • Mensagens: 38.735
  • Sexo: Masculino
Re: Re.: ligamentos se fortalecem com exercícios???
« Resposta #37 Online: 25 de Dezembro de 2005, 21:09:54 »
Citação de: bruno
ligamento não é tendão?
existir existe sim, já rompi ué

tendão também existe, só que é o que liga o músculo ao osso.
O ligamento liga um osso a outro osso.

Offline 3libras

  • Nível 25
  • *
  • Mensagens: 1.119
    • http://sidis.multiply.com
Re: Re.: ligamentos se fortalecem com exercícios???
« Resposta #38 Online: 25 de Dezembro de 2005, 23:13:45 »
Citação de: Danniel
eu acho que isso que disse são os tendões, que ligam os músculos aos ossos... os ligamentos ligam os ossos aos ossos mesmo, e quanto maior for a força muscular, menor a carga sobre eles (ou mais ou menos isso).


na verdade os ligamentos fazem parte da estrutura passiva de locomoção.
quando você faz um esforço além da sua capacidade, você sobrecarrega os ossos e os ligamentos.
para as tarefas do dia a dia é verdade dizer que quanto mais massa muscular menos carga sobre os ligamentos, afinal você é forte o suficiente para não "expor" sua estrutura passiva.
mas para grandes esforços não. pelo contrário pessoas com muita massa muscular, normalmente para chegar além de seu limite muscular precisa assumir um risco bem maior para ossos e articulações que uma pessoa comum.
é mais fácil um cara marombado ferrar o joelho pegando 500kg no leg, do que um iniciante pegando 100kg, apesar que nas devidas proporções o esforço muscular seja o mesmo.

abraços.
If you don't live for something you'll die for nothing.

Offline Thatty

  • Nível 03
  • *
  • Mensagens: 33
Re.: ligamentos se fortalecem com exercícios???
« Resposta #39 Online: 27 de Dezembro de 2005, 02:50:04 »
As informações que eu tenho a respeito condizem exatamente com as do Gustavo Latorre.
“O vento é sempre o mesmo, mas sua resposta é diferente em cada folha. Somente a árvore seca fica imóvel entre borboletas e pássaros.”
(Cecília Meireles)

blue pill

  • Visitante
Re: Re.: ligamentos se fortalecem com exercícios???
« Resposta #40 Online: 28 de Dezembro de 2005, 00:59:24 »
Citação de: Danniel
Citação de: blue pill
hmmmmmm verdade..
entao ligamento é uma coisa, digamos, nao existe? é as "pontas" dos ossos que se encostam ?


Existem sim. Os ossos não ficam simplesmente encostados e meio "soltos", nem se prendem por encaixe físico apenas; os ligamentos são um tecido que os envolve, e os mantém juntos.

Aqui tem desenhos do esqueleto com os ligamentos, são as coisas que parecem um pouco com chiclete, ligando os ossos:

http://www.vh.org/adult/provider/anatomy/atlasofanatomy/plate07/index.html


entao os ligamentos só desenvolve com dieta ? ou com tratamento hormonal (GH) ?

Offline Latorre

  • Nível 12
  • *
  • Mensagens: 249
    • http://www.perineo.cjb.net
Re: Re.: ligamentos se fortalecem com exercícios???
« Resposta #41 Online: 05 de Janeiro de 2006, 19:30:36 »
Citação de: blue pill
só pode fortalecer oras, o que mais fortaleceria os ligamentos ?
como os caras fortoes tem ligamentos fortes? coincidencia ?
pois se nao nao tivessem como conseguiriam levantar o peso que levantam ?...

É mesmo? E quem disse que os ligamentos são tensionados nos momentos de contração muscular?

A função deles é exatamente a oposta, ou seja, manter o alinhamento ósseo quando a musculatura está relaxada e acontece uma exigência mecânica que tenda para o desalinhamento. Salvo, casos extremos durante tensão máxima onde uma força perpedicular ao eixo de movimento da artilação acabe agindo (do tipo um pontapé num jogador de futebol correndo; ou uma torção no joelho de um esquiador que cai).

Durante a contração a tensão entre as estremidades ósseas é tão grande que a estabilidade articular é proporcional ao módulo da força dessa contração.

Mas claro, o Zibs deve ter uma explicação bem mais plausível a respeito.
"If a man will begin in certainties, he shall end in doubts. But if he will be content to begin in doubts, he shall end in certainties." (Francis Bacon)

Tarcísio

  • Visitante
Re.: ligamentos se fortalecem com exercícios???
« Resposta #42 Online: 06 de Janeiro de 2006, 00:28:47 »
Vamos esperar algum psicógrafo vir dar a resposta do zibs então...  :?

Offline Latorre

  • Nível 12
  • *
  • Mensagens: 249
    • http://www.perineo.cjb.net
Re.: ligamentos se fortalecem com exercícios???
« Resposta #43 Online: 06 de Janeiro de 2006, 21:13:27 »
???????
"If a man will begin in certainties, he shall end in doubts. But if he will be content to begin in doubts, he shall end in certainties." (Francis Bacon)

Offline Alenônimo

  • Nível Máximo
  • *
  • Mensagens: 8.545
  • Sexo: Masculino
    • Alenônimo.com.br
Re: Re.: ligamentos se fortalecem com exercícios???
« Resposta #44 Online: 06 de Janeiro de 2006, 21:17:50 »
Gustavo, o zibs morreu a algum tempinho…
“A ciência não explica tudo. A religião não explica nada.”

Offline Latorre

  • Nível 12
  • *
  • Mensagens: 249
    • http://www.perineo.cjb.net
Re.: ligamentos se fortalecem com exercícios???
« Resposta #45 Online: 07 de Janeiro de 2006, 18:31:31 »
Hm...
Acontece...
"If a man will begin in certainties, he shall end in doubts. But if he will be content to begin in doubts, he shall end in certainties." (Francis Bacon)

Offline Buckaroo Banzai

  • Nível Máximo
  • *
  • Mensagens: 38.735
  • Sexo: Masculino
Re: ligamentos se fortalecem com exercícios???
« Resposta #46 Online: 08 de Novembro de 2009, 19:31:39 »
Citar
VI.       Mechanically Mediated Ligament and Tendon Adaptation: Immobilization versus Exercise

            Ligaments and tendons are adapted in response to changes in mechanical stiffness. The changes in ligaments and tendons generally occur more slowly than adaptation in bone, because ligaments and tendons have less vascular supply. Again, our knowledge of how mechanical stimulus mediates ligament and tendon structure is more empirical and less rigorous than that for bone. Most of our knowledge comes from two extremes in mechanical stimulus: immobilization and exercise.

            Immoblization of a joint for a long period of time leads to significant changes in joint structure and function, including decreased range of motion for the joint. The affects of both ligaments and tendons can be severe. Woo et al. studied rabbit knees in the following experimental groups:

1. 9 weeks immobilization
2. 12 weeks immobilization
3. 9 weeks immobilization, then 9 weeks active
4. 12 weeks immoblization, then 9 weeks active

9 weeks of immoblization led to a 69% decrease in ultimate load and an 82% decrease in energy to failure. After 12 weeks of immoblization led to a 71% decrease in ultimate load. Affects on the stress strain curve from Woo are shown below:

                         

If the rabbits became active, there was an increase in stiffness and strength almost back to the level of controls.

Corresponding to the reduction in mechanical properties, there is a reduction in the ligament structure. During immobilization, the cross sectional area of the ACL is reduced. This implies a loss of collagen fibrils as well as a loss of glycosaminoglycans that form the ground substance of the ligament. In addition, the may be alterations in collagen fibril orientation that reduce properties. Upon remoblization, it appears that the mechanical properties of the ligament are gained back first, followed by the structural properties. This indicates that structural loss at the ligament insertion site may take longer to be removed that changes in ligament substance.

Excercise and increased load on tendons and ligaments is believed to alter their structural makeup and lead to increased mechanical properties, although experimental data is far from conclusive. Woo et al studied the affect of exercise on swine digital tendons and the FMTC. Animals were run on a track at speeds of 6 to 8 km/hr for an average of 40km/week for 3 months and 12 months.. A sedentary group was used as a control. The short term group showed no significant changes in mechanical properties for either the tendons or the FMTC. There was an increase in cross-sectional area of the tendon as well as a 22% increase in tensile strength. For the FMTC, however, there was little change in most mechanical properties, although there was a significant increase in maximum load to failure when normalized by animal weight. Another study in dogs also found higher ultimate load to body strength ratios for the FMTC. Woo put the findings on immobilization and exercise together in a graph showing how changes in mechanical load may alter ligament/tendon structure, in a statement he characterized as Wolff's law for ligaments/tendons. This hypothesis from the text is shown below:

                         

As you can see, immobilization has a more rapid and substantial affect on mechanical properties than does increased load from exercise. This is in some ways similar to Frosts theory on adult bone adaptation, where he believed it was difficult to achieve substantial increase in bone structure through mechanical loading unless damaged was caused, but that losses in bone mass were realized quite readily when loads were significantly reduced as in immobilization. The same can be seen in the above graph for ligaments and tendons.


http://www.engin.umich.edu/class/bme456/ligten/ligten.htm






Tendon and ligament adaptation to exercise, immobilization,
and remobilization


Tishya A. L. Wren, PhD; Gary S
. Beaupre, PhD; Dennis R. Carter, PhD
Rehabilitation Research and Development Center
; Veterans Affairs Health Care System, Palo Alto, CA;
Biomechanical Engineering Division, Mechanical Engineering Department, Stanford University, Stanford, CA.

Abstract—This study provides a theoretical and computation-
al basis for understanding and predicting how tendons and lig-
aments adapt to exercise, immobilization, and remobilization.
In a previous study, we introduced a model that described the
growth and development of tendons and ligaments . In this
study, we use the same model to predict changes in the cross-
sectional area, modulus, and strength of tendons and ligaments
due to increased or decreased loading . The model predictions
are consistent with the results of experimental exercise and
obilization studies performed by other investigators . These
results suggest that the same fundamental principles guide both
development and adaptation. A basic understanding of these
principles can contribute both to prevention of tendon and lig-
ament injuries and to more effective rehabilitation when injury
does occur.


http://www.rehab.research.va.gov/jour/00/37/2/pdf/thirdcarter.pdf


 

Do NOT follow this link or you will be banned from the site!