O argumento da sintonía fina do universo sozinho derruba todos os argumentos da origem naturalística do universo. Pode haver trilhões e trilhões de estrelas, galaxias etc. sem vida, mas apenas o fato de haver vida em nosso planeta é um milagre sem tamanho, e que não pode ser explicado de outra forma, a não ser que mediante uma força sobrenatural. O ajuste fino do universo , e que só mediante este a vida em nosso planeta é possível, é fato. Não há discordância em relação a isso. A probabilidade que todos os parâmetros necessários tivessem surgidos por acaso, é tão ínfimamente pequena, que pode ser discartada. A hipótese dos multiversos, um dos poucos argumentos usados por ateus conhecidos, nunca foi observada. Não há evidência para tais. E mesmo que existíssem, este argumento não elimina a necessidade de Deus existir. Apenas complica ainda mais as coisas....
Pode se dizer portanto: Há vida em nosso planeta, e o modelo criacionista é o melhor para explicar este fato.
http://www.geraldschroeder.com/finetuning.aspxProfessor Steven Weinberg, a Nobel laureate in high energy physics (a field of science that deals with the very early universe), writing in the journal "Scientific American", reflects on:
how surprising it is that the laws of nature and the initial conditions of the universe should allow for the existence of beings who could observe it. Life as we know it would be impossible if any one of several physical quantities had slightly different values.
Although Weinberg is a self-described agnostic, he cannot but be astounded by the extent of the fine-tuning. He goes on to describe how a beryllium isotope having the minuscule half life of 0.0000000000000001 seconds must find and absorb a helium nucleus in that split of time before decaying. This occurs only because of a totally unexpected, exquisitely precise, energy match between the two nuclei. If this did not occur there would be none of the heavier elements. No carbon, no nitrogen, no life. Our universe would be composed of hydrogen and helium. But this is not the end of Professor Weinberg's wonder at our well-tuned universe. He continues:
One constant does seem to require an incredible fine-tuning -- The existence of life of any kind seems to require a cancellation between different contributions to the vacuum energy, accurate to about 120 decimal places.
This means that if the energies of the Big Bang were, in arbitrary units, not:
100000000000000000000000000000000000000000000000000 000000000000000000000000000000000000000000000000000 000000000000000000,
but instead:
100000000000000000000000000000000000000000000000000 000000000000000000000000000000000000000000000000000 000000000000000001,
there would be no life of any sort in the entire universe because as Weinberg states:
the universe either would go through a complete cycle of expansion and contraction before life could arise, or would expand so rapidly that no galaxies or stars could form.
Michael Turner, the widely quoted astrophysicist at the University of Chicago and Fermilab, describes the fine-tuning of the universe with a simile:
The precision is as if one could throw a dart across the entire universe and hit a bulls eye one millimeter in diameter on the other side.
Roger Penrose, the Rouse Ball Professor of Mathematics at the University of Oxford, discovers that the likelihood of the universe having usable energy (low entropy) at the creation is even more astounding,
namely, an accuracy of one part out of ten to the power of ten to the power of 123. This is an extraordinary figure. One could not possibly even write the number down in full, in our ordinary denary (power of ten) notation: it would be one followed by ten to the power of 123 successive zeros! (That is a million billion billion billion billion billion billion billion billion billion billion billion billion billion zeros.)
Penrose continues,
Even if we were to write a zero on each separate proton and on each separate neutron in the entire universe -- and we could throw in all the other particles as well for good measure -- we should fall far short of writing down the figure needed. The precision needed to set the universe on its course is to be in no way inferior to all that extraordinary precision that we have already become accustomed to in the superb dynamical equations (Newton's, Maxwell's, Einstein's) which govern the behavior of things from moment to moment.
Cosmologists debate whether the space-time continuum is finite or infinite, bounded or unbounded. In all scenarios, the fine-tuning remains the same.
It is appropriate to complete this section on "fine tuning" with the eloquent words of Professor John Wheeler:
To my mind, there must be at the bottom of it all, not an utterly simple equation, but an utterly simple IDEA. And to me that idea, when we finally discover it, will be so compelling, and so inevitable, so beautiful, we will all say to each other, "How could it have ever been otherwise?"